Clusters and Coarse Partitions in LP Relaxations
نویسندگان
چکیده
We propose a new class of consistency constraints for Linear Programming (LP) relaxations for finding the most probable (MAP) configuration in graphical models. Usual cluster-based LP relaxations enforce joint consistency on the beliefs of a cluster of variables, with computational cost increasing exponentially with the size of the clusters. By partitioning the state space of a cluster and enforcing consistency only across partitions, we obtain a class of constraints which, although less tight, are computationally feasible for large clusters. We show how to solve the cluster selection and partitioning problem monotonically in the dual LP, using the current beliefs to guide these choices. We obtain a dual message passing algorithm and apply it to protein design problems where the variables have large state spaces and the usual cluster-based relaxations are very costly. The resulting method solves many of these problems exactly, and significantly faster than a method that does not use partitioning.
منابع مشابه
Tightening LP Relaxations for MAP using Message Passing
Linear Programming (LP) relaxations have become powerful tools for finding the most probable (MAP) configuration in graphical models. These relaxations can be solved efficiently using message-passing algorithms such as belief propagation and, when the relaxation is tight, provably find the MAP configuration. The standard LP relaxation is not tight enough in many real-world problems, however, an...
متن کاملEfficient Lifting of MAP LP Relaxations Using k-Locality
Inference in large scale graphical models is an important task in many domains, and in particular for probabilistic relational models (e.g,. Markov logic networks). Such models often exhibit considerable symmetry, and it is a challenge to devise algorithms that exploit this symmetry to speed up inference. Here we address this task in the context of the MAP inference problem and its linear progr...
متن کاملLP Relaxations of Some NP-Hard Problems Are as Hard as Any LP
We show that solving linear programming (LP) relaxations of many classical NP-hard combinatorial optimization problems is as hard as solving the general LP problem. Precisely, the general LP can be reduced in linear time to the LP relaxation of each of these problems. This result poses a fundamental limitation for designing efficient algorithms to solve the LP relaxations, because finding such ...
متن کاملThe Power of Semidefinite Programming Relaxations for MAX-SAT
Recently, Linear Programming (LP)-based relaxations have been shown promising in boosting the performance of exact MAX-SAT solvers. We compare Semidefinite Programming (SDP) based relaxations with LP relaxations for MAX2SAT. We will show how SDP relaxations are surprisingly powerful, providing much tighter bounds than LP relaxations, across different constrainedness regions. SDP relaxations can...
متن کاملInteger Programming Relaxations for Integrated Clustering and Outlier Detection
In this paper we present methods for exemplar based clustering with outlier selection based on the facility location formulation. Given a distance function and the number of outliers to be found, the methods automatically determine the number of clusters and outliers. We formulate the problem as an integer program to which we present relaxations that allow for solutions that scale to large data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008